tisdag 20 november 2018

Persimoni antaa vitamineraaleja. A-vitamiinia ja karotenoideja mukavasti

https://www.totalproducenordic.se/everfresh/sv/produkter/Frukt/Druvor2/SharonPersimonKaki/
Kuvassa on PERSIMON.  Israelin vastaava hedelmä on jalostettu, sikäli että siinä ei ole parkkihappoja, jotka persimonista katoavat vasta kun se on täysin kypsä. Sharonhedelmä on myös siemenettömämpi ja sen voi syödä jo ennen kuin se on ylikypsä. Nämä hedelmät  persimon, kaki, ja Sharon  kuuluvat ebonipuuheimoon Ebenaceae, sukuun Diospyros. Kts. engl. selvitys taxonomiasta lopussa. 


 Sitaatti

Sharon/Persimon/Kaki (Svenska)

Frukten påminner till utseendet om en tomat, men skiljer sig genom de 4 stora foderbladen. Färgen kan vara gul- eller röd-orange. Skal och fruktköttet har samma färg. Frukten är indelad i upp till 8 rum. När den är fullmogen är köttet genomskinligt och har mjuk, nästan flytande konsistens. Skalet är tunt som hos tomat. Kan ätas, kan upplevas som segt och då kan den skala. Smaken är söt, fyllig och påminner något om söta plommon och dadlar. De flesta typer är kärnfria.
Några persimon- och kakisorter innehåller i omoget tillstånd en garvsyra. Den bryts ner under mognaden och dessa typer är därför inte ätliga innan frukten är helt mogen och mjuk.
Sharonfrukter är persimon/kaki som vidareutvecklats i Israel. Dessa frukter saknar bitterämnen, och kan ätas direkt efter skörd. Smaken är söt och fyllig. Ibland skiftar fruktköttet i brunt, vilket är en sockerutfällning. Det försämrar inte kvaliteten på frukten. Frukterna kan förvaras kallt, 0-4 grader. Omogna frukter mognar i rumstemperatur. Mogna är mycket känsliga för tryck och klämskador och bör lagras så kort tid som möjlig.

Ravintotekijä Määrä Menetelmä Tietolähde Julkaisu
folaatti, kokonais- 8.0 µg muu arvon tyyppi elintarvikekoostumustaulukko 1075
niasiiniekvivalentti NE 0.2 mg muu arvon tyyppi elintarvikekoostumustaulukko 1075
niasiini (nikotiinihappo + nikotiiniamidi) 0.1 mg muu arvon tyyppi elintarvikekoostumustaulukko 1075
pyridoksiini vitameerit (vetykloridi) (B6) 0.02 mg laskettu kertoimilla THL:n tuottama
riboflaviini (B2) 0.02 mg muu arvon tyyppi elintarvikekoostumustaulukko 1075
tiamiini (B1) 0.03 mg muu arvon tyyppi elintarvikekoostumustaulukko 1075
B12-vitamiini (kobalamiini) 0 µg muu arvon tyyppi elintarvikekoostumustaulukko 1075
C-vitamiini 8.0 mg muu arvon tyyppi elintarvikekoostumustaulukko 1075
A-vitamiini RAE 107.1 µg summattu osatekijöistä THL:n tuottama
karotenoidit 1 290.0 µg summattu osatekijöistä THL:n tuottama
D-vitamiini 0 µg muu arvon tyyppi elintarvikekoostumustaulukko 1075
E-vitamiini alfatokoferoli 0 mg muu arvon tyyppi elintarvikekoostumustaulukko 1075
K-vitamiini 2.60 µg muu arvon tyyppi elintarvikekoostumustaulukko 1207 

Englantilainen taksonomia:

Diospyros-genuksessa on  noin 500 löajia(species) eboniperheen puita ja pensaita, joko letensä tiputtavia tai ikivihreitä, useimmat voat  peräisin tropiikista.


 Diospyros, genus of some 500 species of trees and shrubs of the ebony family (Ebenaceae), either deciduous or evergreen, most of which are native to the tropics. The leaves, which lack teeth, are usually borne alternately on opposite sides of the twig. The fruit is a large juicy berry with 1 to 10 seeds. Some members of the genus are valuable for their timber, particularly several species of ebony. Others are cultivated for their handsome foliage or edible fruit. Chief among the latter are the common, or American, persimmon (D. virginiana), native to North America, and the Japanese, or kaki, persimmon (D. kaki), native to China but widely cultivated in other temperate regions. The globular orange fruit of D. virginiana is about 4 cm (1.5 inches) in diameter. The tree grows about 10 to 12 metres (33 to 40 feet) tall and bears yellowish white, bell-shaped flowers. D. kaki grows 12 metres (39 feet) tall or more and bears yellowish white flowers and orange-red fruit about 7.5 cm (3 inches) in diameter. Several hundred varieties of D. kaki have been developed. Other species include the date plum (D. lotus), the black sapote (D. digyna), and the mabola (D. discolor), the last being cultivated for its tasty fruit, which is dark red to purple.


20.11. 2018  

söndag 18 november 2018

Passiflora-hedelmän antioksidanteista

 PASSIOHEDELMÄ Passiflora edulis . Tämän kuvan otin kadunvarrelta Haifassa toukokuussa 2017.
Näitä Passiflora penrai oli siellä täällä yksityistalojen puutarhoissa.   Torikaupasta Akkossa  sai ostaa vastapuristettua tuoretta passiflora- juissia jääpalojen kera  hellepäivinä. Aivan ihana juoma!




 lisälukemista:
Lestrup. T. 2008, Tutti frutti – Kaiken maailman hedelmät tutuiksi, Karisto Oy:n kirjapaino, Hämeenlinna 2008
http://fi.wikipedia.org/wiki/Punapassio 

http://www.kasvikset.fi/WebRoot/1033640/Oletussivu.aspx?id=1050835

http://kuuyrttitarhassa.blogspot.fi/2012/03/intohimoinen-passionhedelma.html

http://ruoka.fi/reseptit/helppo-kerrosherkku-mangosta-granaattiomenasta-ja-passiohedelmasta
http://www.healwithfood.org/health-benefits/passion-fruit-seeds.php

http://www.nutrition-and-you.com/passion-fruit.html
 Health benefits of passion fruit
  • Delicious, passion fruit is a rich source of antioxidants, minerals, vitamins, and fiber. 100 g fruit contains about 97 calories.
  • The fruit is an excellent source of dietary fiber. 100 g fruit pulp contains 10.4 g or 27% of fiber. A good fiber in the diet helps remove cholesterol from the body. Being a good bulk laxative, it also helps protect the colon mucosa by decreasing exposure time to toxic substances in the colon and wiping off the cancer-causing toxic substances from the colon.
  • Passion fruit is good in vitamin-C, providing about 30 mg per 100 g. Vitamin-C (ascorbic acid) is a powerful water-soluble antioxidant. Consumption of fruits rich in vitamin-C helps the human body develop resistance against flu-like infectious agents and scavenge harmful, pro-inflammatory free radicals.
  • The fruit carries very good levels of vitamin-A (provides about 1274 IU per 100 g), and flavonoid antioxidants such as ß-carotene and cryptoxanthin-ß. Current research studies suggest that these compounds have antioxidant properties, and along with vitamin-A are essential for good eyesight.
  • Vitamin-A also required for maintaining healthy mucosa and skin. Consumption of natural fruits rich in vitamin-A and flavonoids may help to protect from lung and oral cavity cancers.
  • Fresh granadilla is very rich in potassium. 100 g fruit pulp has about 348 mg of potassium. Potassium is a major component of cells and body fluids and helps regulate heart rate and blood pressure.
  • Furthermore, granadilla is an excellent source of minerals. Iron, copper, magnesium and phosphorus are present in adequate amounts in the fruit.



https://www.sciencedirect.com/science/article/pii/S0308814611003670?via%3Dihub

Evaluation of the antioxidant activity of passion fruit (Passiflora edulis and Passiflora alata) extracts on stimulated neutrophils and myeloperoxidase activity assays


Under an Elsevier user license

1. Introduction

Polymorphonuclear neutrophils (PMN) are specialised for their primary function of phagocytosis, with highly developed mechanisms for intracellular digestion of particles, such as pathogens and cell debris. However, excessive activation of PMN generates reactive oxygen species (ROS). In addition to producing ROS, neutrophil granules discharge hydrolytic and proteolytic enzymes, which are implicated in several human and animal diseases, such as neurodegenerative disorders, cancer, cardiovascular diseases, atherosclerosis, cataracts, DNA damage and inflammation, etc. (Babior, 2000, Klebanoff, 2005).
Myeloperoxidase (MPO), a specific granular enzyme of PMN, is considered as a marker of stimulated PMN and contributes to oxidative stress by generating oxidant species, particularly hypochlorous acid (HOCl), an important microbial killer through both oxidation and chlorination reactions (Deby-Dupont et al., 1999, Serteyn et al., 2003). MPO is released in the extracellular medium by highly stimulated and dying neutrophils in pathological conditions of acute and chronic inflammation. Under these conditions, MPO is able to exert oxidant activity on neighbouring cells and tissues (Klebanoff, 2005).
Many molecules, such as phenolic compounds, are known to possess antioxidant activity that inhibits oxidative damage and may consequently prevent inflammatory conditions (Khanna et al., 2007), ageing and neurodegenerative diseases (Fusco, Colloca, Monaco, & Cesari, 2007). Recent studies have focused on the health effects of phenols, including flavonoids from fruit and vegetables (Conforti et al., 2009, Vila et al., 2008). Phenolic compounds are present in many plants, such as Passiflora edulis and Passiflora alata, mainly belonging to the flavones C-glucoside class (Dhawan, Dhawan, & Sharma, 2004). Isoorientin (Fig. 1), a C-glucoside flavone found in P. edulis (Dhawan et al., 2004), was also found to be the major flavonoid in pulp extracts of this species. In fact, the total flavonoid content in P. edulis pulp was reported to be quite significant in comparison with other beverages that are sources of flavonoids, such as orange juice and sugarcane juice (Zeraik & Yariwake, 2010).

The aforementioned Passiflora species are widely cultivated and consumed in Brazil: P. edulis pulp is used mainly in the industrial production of juice, while P. alata is typically consumed fresh due to its sweeter taste (Carvalho-Okano & Vieira, 2001). Passion fruit rind, the main by-product of the juice industry, contains pectin, a highly valued functional food ingredient widely used as a gelling agent and stabiliser (Pinheiro et al., 2008). These rinds have also been studied for use in the production of candy and flour for human consumption (Ramos et al., 2007). Due to its high nutritional value and flavonoid contents, investigations to evaluate the potential of passion fruit as a functional food or a source of active compounds for antioxidant or anti-inflammatory purposes are very important. Moreover, although agroindustrial by-products may be rich sources of bioactive compounds (Balasundram, Sundram, & Samman, 2006), the use of passion fruit rinds still requires further studies.

Recent studies have shown the potential of passion fruit and its rind for several purposes, such as the antihypertensive effect of passion fruit rind attributed partially to the vasodilatory effect of polyphenols, especially the flavonoid luteolin (Ichimura et al., 2006). However, the pulp biological activity that has been the most extensively studied is its antioxidant activity, using various methods, such as DPPH, FRAP, ABTS and DMPD (Kuskoski et al., 2005, Vasco et al., 2008). These methods explore mainly the stoichiometric activity of extracts by measuring the ability of polyphenolic molecules to trap or neutralise radical species generated by in vitro molecular models. Some in vivo studies have detected anti-inflammatory activity of P. edulis and P. alata leaves (Vargas et al., 2007, Zucolotto et al., 2009) by using a carrageenan-induced pleurisy model in mice. These studies showed a decrease of MPO activity, which was associated with a decrease of neutrophil influx. However, the effect of these extracts on ROS produced by stimulated neutrophils and on the true enzymatic activity of MPO, considered as a target for new drug development (Malle, Furtmuller, Sattler, & Obinger, 2007) has not been studied.

 The originality of this work was to study the antioxidant activities of passion fruit extracts in a model that distinguishes between two important aspects of the antioxidant activity of a molecule or an extract, either its stoichiometric activity of ROS trapping or its anticatalytic activity by blocking the active site of an oxidant-producing enzyme. In the present study, we assessed the antioxidant activities on phorbol myristate acetate-stimulated equine neutrophils and on purified equine MPO of dry methanol extracts from raw pulp of P. alata and P. edulis and also from the rind of P. edulis fruit infected or not with the passion fruit woodiness virus (PWV) (Trevisan et al., 2006). The stoichiometric effect of the extracts on the production of ROS by PMN was measured by lucigenin-enhanced chemiluminescence (CL), while the anticatalytic effect on the activity of purified MPO was evaluated by SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection), a method whereby the drug interaction with the enzyme can be studied without interference from the reaction medium (Franck et al., 2006). Additionally, the isoorientin content in the extracts was determined by HPLC–UV/DAD.
....



4. Conclusions
P. edulis rinds exhibited a higher activity than P. alata towards the oxidant response of equine PMN, including ROS production and MPO activity. This antioxidant activity was correlated with the isoorientin content in the P. edulis extracts, and suggests that the passion fruit rinds – a by-product of the passion fruit processing industry – are a possible source of natural antioxidants that should be more carefully evaluated. In addition, the combination of the neutrophil and the myeloperoxidase models, both cells and enzyme playing important roles in ROS and radical species production, appears as an efficient tool to detect and distinguish between the stoichiometric and anticatalytic antioxidant activities of natural compounds with potential therapeutic effects on oxidant stress and inflammation.




Fig. 1. Structure of the flavone isoorientin and Glu: glucose.


onsdag 31 oktober 2018

Kiwi ( Kiivihedelmä) Actinidia sp. Actinidiaceae

 Tämän heimon ensimmäinen kasvi oli KIWI- hedelmä.  Siteeraan tietoa mitä löydän:
 
 ACTINIDIACEAE (laikkuköynnökset) 
Actinidia kolomikta,
 ruots. kameleontbuske (Sommargröna lignos,  klätterväxter)
 suom. KIINANLAIKKUKÖYNNÖS
     Esimerkki tämän heimon kasivsta on  KIINANLAIKKUKÖYNNÖS. Sen ruotsalainen nimi on kameleonttipuska, Kameleontbuske. Sen  kesävihanta lignoosi , kiipeävä köynnöskasvi
    Löydän sille netistä monta synonyymiä-
var. gagnepainii (Nakai) H.L.Li
Actinidia gagnepainii Nakai
var. kolomikta
Actinidia kolomikta var. shihmienensis C.Y.Chang
Actinidia leptophylla C.Y.Wu
Actinidia maloides Li
Actinidia maloides f. cordata C.F.Liang
Actinidia tetramera var. maloides (H.L.Li) C.Y.Wu
Kalomikta mandshurica Regel ex Maxim. nom. illeg.
Prunus kolomikta Maxim. & Ruprecht
Trochostigma kolomikta (Maximowicz & Ruprecht) Rupreccht
PubMed hakulaitetella Actinidiaceae- heimosta löytyy  yli 700 artikkelia. Silmäilen niistä jotqin olennaista tietoa esiin. Myös KIWI hedelmä kuuluu tähän lajiin. Siitä on eräs tieteellinen  artikkeli. 
Suomennosta.
" KIWI -hedelmä, Actinia chinensis,   on geneettisesti sekvensoitu ja se on Actinidaceae- heimon ensimmäinen jäsen.  Sen geenihistoriassa huomataan jälkeä polyploidisoitumistapahtumista, joita on ollut vaikea kartoittaa. Tässä artikkelissa tutkijat  esittävät uuden analysoinnin sen genomista ja ha havaitsivat  näyttöä kahdesta tetraplodisoitumistapahtumasta, joista toinen oli  50- 57 miljoonaa  vuotta sitten  ja toinen  noin 18- 20 miljoonaa vuotta sitten.  Kaksi  genomista alaryhmää  ovat olleet  tasapainoisessa fraktionaatiossa. Lisäksi  on havaittu  geenien ilmenevän tasapainoisella tavalla kromosomiduplikaatiokopioiden suhteen.  Kiwihedelmän  geeneissä on havaittu  alentunutta evolutionaalista tahtia.  Nämä havainnot   voisivat selittyä  polyploidisoitumistapahtumien todennäköisestä autotetraploidisaatioluonteesta.  Lisäksi tutkijat havaitsivat, että polyploidisaatio vaikutti osaltaan  avainasemassa olevien funktionaalisten geenien kuten  esim. C-vitamiinin  biosynteesin geenien laajenemiseen. Tutkijoiden työ  suo myös tärkeää vertailevaa genomista tietoa  Actinidaceae heimosta  ja sen kaltaiasista   heimoista". 
  • The genome of kiwifruit (Actinidia chinensis) was sequenced previously, the first in the Actinidiaceae family. It was shown to have been affected by polyploidization events, the nature of which has been elusive. Here, we performed a reanalysis of the genome and found clear evidence of 2 tetraploidization events, with one occurring ∼50-57 million years ago (Mya) and the other ∼18-20 Mya. Two subgenomes produced by each event have been under balanced fractionation. Moreover, genes were revealed to express in a balanced way between duplicated copies of chromosomes. Besides, lowered evolutionary rates of kiwifruit genes were observed. These findings could be explained by the likely auto-tetraploidization nature of the polyploidization events. Besides, we found that polyploidy contributed to the expansion of key functional genes, e.g., vitamin C biosynthesis genes. The present work also provided an important comparative genomics resource in the Actinidiaceae and related families.
www.Fineli.fi antaa tietoa jonkin  Kiwi- eli  kiivihedelmäsortin   C-vitamiinipitoisuudesta.

 https://fineli.fi/fineli/fi/elintarvikkeet?q=kiivi&foodType=ANY
100 g kuorittua kiivihedelmää antaa 67 mg C-vitamiinia, mikä  kattaa hyvin   vähimmän ehdottomasti  vaadittavan  päivätarpeen 10 mg.  Keskimääräinen C-vitamiinitarpe miehillä on  60 mg ja naisilla 50 mg. Suositus NNR 2012  on kuitenkin miehille  ja naisille  75 mg C- vitamiinia päivässä, joten   kiivihedelmästa sellaiseen määrään  pääsee noin 120  grammalla kuorittua  Kiwihedelmää.   Jos  syö hedelmän kuorineen  tarvitsee  syödä muutaman gramman enemmän  jotta yltää  tuohon C-vitamiinimäärään ( 121 grammaa  kiivihedelmää).
  Kiwihedelmästä (100g)  saa K-vitamiinia  34  mikrogrammaa.  Kaliumia saa noin 290  grammaa.
Kirpeä  maku kiivihedlmässä johtuu sen orgaanisista hapoista , joita on  2.5 grammaa / 100 grammaa. 

Japanilaiset ovat  tutkineet tarkasti  kiivihedelmien (Actinia arguta )  terveydellisiä etuja. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717121/
Jos vertaan näitä tietoja suomaliseen elintarviketietueeseen,   täytyy päätellä että kiivilaatu,jota japanilaiset  käyttävät  "kiivimarja"  on  eri kuin se minkä suomalaiset ovat  analysoineet.  Heidän analyysinsä antaa  450 mg C-vitamiinia 100 grammassa tuoretta kiivimarjaa. Lisäksi myo-inositolilähteenä  he amintisevat tämän kiivimarjan erinomaisena. Se voisi olla hyödyksi luuston  kohentamiseen, koska se antaa myo-inositolia ( molekyyliä, joka voi kantaa runsaasti  fosfaatteja, jotka  inositolirungossa ollen ovat orgaanisia. 982 mg myoinositolia / 100g tuoretta kiivimarjaa. Lisäksi siinä on runsaasti fenolisia antioksidantteja 1301 mg/ 100 g.  Siinä on lisäksi luteiinia, joka on silmänpohjalle edullinen molekyyli. Myös essentieleljä mineraaleja mainitaan: kalium, kalsium, sinkki. Sen monet hyvät ominaisuudet liittävät sen terveysruokiin. Artikkeli mainitsee kolme  lajia: A.arguata, A. kolomikta ja A.polygama. Niitä sanotaan myös anti-inflammatorisiksi vaikutukseltaan ( kun kyse ei ole allergisesta tulehduksesta).  Siis kaikin puolin Pohjolan ihmisille suositeltava   kaamoksen ajan  hedelmä. 
  •  The kiwiberry (Actinidia arguta) is a new product on the market that is enjoying growing consumer acceptance around the world. This widespread interest has created increased demand for identification of the kiwiberry’s nutritional health benefits. Containing over 20 essential nutrients and a range of vitamins, the kiwiberry comes near the top of fruits classed as superfoods. It is one of the richest sources of vitamin C with up to 430 mg/100 g fresh weight (FW) and is considered the richest dietary source of myo-inositol (up to 982 mg/100 g FW). The kiwiberry is also one of the richest sources of lutein (up to 0.93 mg/100 g FW) in commonly consumed fruit. Furthermore, containing up to 1301.1 mg/100 g FW phenolics and significant amounts of the essential minerals of potassium, calcium and zinc, the kiwiberry rates very highly as a ‘healthy food’. The type and number of this fruit’s medicinally promising nutrients have motivated ongoing investigations into its antioxidant, anti-tumour and anti-inflammatory properties. Early research has pointed to the kiwiberry being a very promising treatment for some cancers and health issues involving the gastrointestinal system, hypercholesterolemia and certain cancers. A pharmaceutical composition of A. arguta, A. kolomikta, and A. polygama extracts has already been registered for the prevention and treatment of some immune (inflammatory) mediated diseases, as well as the treatment of some non-allergic inflammatory diseases. This paper reviews and highlights the limited nutritional and therapeutic information currently available on the kiwiberry, a minor fruit possessing such major properties.
Muistiin  31.10.2018

fredag 3 augusti 2018

Probioottiset meloni ja cashew juissit

https://www.ncbi.nlm.nih.gov/pubmed/28784506

Food Res Int. 2017 Sep;99(Pt 1):461-468. doi: 10.1016/j.foodres.2017.05.030. Epub 2017 May 30.
Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice.

Abstract

The aim of this study was to evaluate the influence of the lactic acid fermentation on volatile compounds of melon and cashew apple juices. The effect of the fermentation processing on the volatile profile of probiotic juices was assessed by HS-SPME/GC-MS coupled to chemometrics with 67.9% and 81.0% of the variance in the first principal component for melon and cashew juices, respectively.

 The Lactobacillus casei fermentation imparted a reduction of ethyl butanoate, ethyl-2-methylbutirate, and ethyl hexanoate for melon juice; and of ethyl acetate, ethyl-2-methyl butanoate, ethyl crotonate, ethyl isovalerate, benzaldehyde, and ethyl hexanoate for cashew juice. Measurements of the stability of these compounds and the formation of the component 3-methyl-2-butenyl in melon juice may be used as a volatile marker to follow the juice fermentation.

 These findings suggested that even though it is not a dairy product the lactic acid fermentation of fruits developed a volatile profile combining the fruit and lactic acid fermentation volatiles with mildly formation or degradation of aroma compounds.

KEYWORDS:

Anacardium occidentale; Chemometrics; Cucumis melo; HS-SPME/GC–MS; Lactic acid fermentation
PMID:
28784506
DOI:
10.1016/j.foodres.2017.05.030

fredag 18 maj 2018

lördag 24 mars 2018

Rosmariiniöljy - mitä tämä sisältää?

https://www.ncbi.nlm.nih.gov/pubmed/29348107

https://phytochem.nal.usda.gov/phytochem/plants/show/1719?qlookup=Rosmarinus+officinalis&offset=0&max=20&et=

Rosmariinin öljyn osatekijöitä: 
https://phytochem.nal.usda.gov/phytochem/plants/show/1719?qlookup=Rosmarinus+officinalis&offset=0&max=20&et=https://phytochem.nal.usda.gov/phytochem/plants/show/1719?qlookup=Rosmarinus+officinalis&offset=0&max=20&et=
  • 18CINEOL eli eukalyptol
  https://sv.wikipedia.org/wiki/Eukalyptol

(saksalainen selitys) Pharmakologische Wirkungen
1,8-Cineol wirkt beim Menschen in der Lunge und den Nebenhöhlen schleimlösend und bakterizid. Außerdem hemmt es bestimmte Neurotransmitter, die für die Verengung der Bronchien verantwortlich sind. Bei Asthmatikern kann unter ärztlicher Kontrolle durch Gabe von reinem Cineol die Lungenfunktion verbessert werden.[9][10] Cineol stellt jedoch nur in Ausnahmefällen eine Alternative zu Corticosteroiden dar, die als Inhalation örtlich und nebenwirkungsarm angewandt werden können. Auch bei der chronisch-obstruktiven Lungenerkrankung COPD kann reines Cineol als Zusatzmedikation zur Standardtherapie unter Umständen die Lungenfunktion verbessern und auf diese Weise Exazerbationen reduzieren.[11]
Von 1,8-Cineol sind als Nebenwirkungen leichte Stuhlverflüssigung und eventuell leichte Übelkeit bekannt. Beides tritt nur bei oraler Einnahme auf. Weiterhin wurden – vor allem bei Kindern – auch allergische Reaktionen[12] beschrieben. Die Einnahme erfolgt durch orale Zufuhr von Kapseln, die sich erst im Dünndarm auflösen, durch Inhalation oder durch Zubereitung entsprechender den Wirkstoff enthaltender Pflanzen als Aufguss.

  •  LIMONENE
 https://sv.wikipedia.org/wiki/Limonen

  •  OCIMENE
https://en.wikipedia.org/wiki/Ocimene
https://de.wikipedia.org/wiki/Ocimene

  • BASILICUM OIL 
https://de.wikipedia.org/wiki/Basilikum%C3%B6l


OCINUM CANUM
https://www.sciencedirect.com/science/article/pii/S1319610312000026

OCINUM lajeja:
basilikasuku

https://sv.wikipedia.org/wiki/Kransblommiga_v%C3%A4xter

torsdag 22 mars 2018

Diterpenoidien tutkimusalalta

Diterpenoidit kasvikunnassa voivat sisältää lääkkeellisiä ominaisuuksia , kun ne vain on saatu löydettyä.

Diterpenoids from the Medicinal Plants of Africa

Louis Pergaud Sandjoa, Victor Kueteb, in Medicinal Plant Research in Africa, 2013
3.1

Introduction

Diterpenoids are secondary metabolites containing 20 atoms of carbon derived from the condensation of four isoprenyl units.
 As other terpenoids, they are widespread in the plant kingdom, and most of them biosynthetically derive from geranylgeranyl diphosphate, which forms
  •  acyclic (phytanes), 
  • bicyclic (labdanes, halimanes, clerodanes),
  •  tricyclic (pimaranes, abietanes, cassanes, rosanes, vouacapanes, podocarpanes),
  •  tetracyclic (trachylobanes, kauranes, aphidicolanes, stemodanes, stemaranes, atisanes, gibberellanes), and
  •  macrocyclic diterpenes (taxanes, cembranes, daphnanes, tiglianes, ingenanes) according to the cyclization that occurs [1].

 Diterpenoids are divided into more than 45 classes; they are also found in marine organisms, which provide interesting skeletons (Figure 3.1) such as elisapterane (39).
 Figure 3.1 presents the structural diversity and some of the skeletons of this class of compounds.

Plants produce secondary metabolites in response to some external factors from their biotope. To fight against these, the host plant produces diterpenes, which could represent a problem in the living ecosystem of that species because of the allelopathic activity of some of these terpenoids against surrounding flora [24]

In addition, diterpenoid quinones from the roots of Salvia officinalis were earlier reported to display DNA-damaging effect on colonic and hepatic human cells cultured in vitro, although cytotoxic activity was observed [25]. Nevertheless, these structures are synthesized in the ertheless, these structures are synthesized in the plant cells following a well-established mechanism.Read full chapter