tisdag 20 juni 2017

Kakaon prosessoinnin ja paahdon vaikutus fenolisiin yhdissteisiin

https://www.ncbi.nlm.nih.gov/pubmed/20843086


J Agric Food Chem. 2010 Oct 13;58(19):10518-27. doi: 10.1021/jf102391q.

Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients.

Abstract




Low molecular weight flavan-3-ols are thought to be responsible, in part, for the cardiovascular benefits associated with cocoa powder and dark chocolate. The levels of epicatechin and catechin were determined in raw and conventionally fermented cacao beans and during conventional processing, which included drying, roasting, and Dutch (alkali) processing. Unripe cacao beans had 29% higher levels of epicatechin and the same level of catechin compared to fully ripe beans. Drying had minimal effect on the epicatechin and catechin levels. Substantial decreases (>80%) in catechin and epicatechin levels were observed in fermented versus unfermented beans. When both Ivory Coast and Papua New Guinea beans were subjected to roasting under controlled conditions, there was a distinct loss of epicatechin when bean temperatures exceeded 70 °C. When cacao beans were roasted to 120 °C, the catechin level in beans increased by 696% in unfermented beans, by 650% in Ivory Coast beans, and by 640% in Papua New Guinea fermented beans compared to the same unroasted beans. These results suggest that roasting in excess of 70 °C generates significant amounts of (-)-catechin, probably due to epimerization of (-)-epicatechin. Compared to natural cocoa powders, Dutch processing caused a loss in both epicatechin (up to 98%) and catechin (up to 80%). The epicatechin/catechin ratio is proposed as a useful and sensitive indicator for the processing history of cacao beans.
PMID:
20843086
DOI:
10.1021/jf102391q
[Indexed for MEDLINE]

Kommenttini: Termejä mainituista fytokemikaleista:

http://www.phytochemicals.info/phytochemicals/epicatechin.php 
EPIKATEKIINI
 Synonyms
(2R,3R)-2-(3,4-Dihydroxyphenyl) -3,4-dihydro-1(2H) -benzopyran-3,5,7-triol; cis-3,3',4',5,7-Pentahydroxyflavane; Epicatechol; epi-Catechin;epi-Catechol;
 KATEKIINI
https://en.wikipedia.org/wiki/Catechin 
IUPAC-nummer: (2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol

Tumma suklaa 70% kaakaota, 4% polyfenoleja

https://www.ncbi.nlm.nih.gov/pubmed/26673833
J Diet Suppl. 2016;13(4):449-60. doi: 10.3109/19390211.2015.1108946. Epub 2015 Dec 16.

The Neuroprotective Effect of Dark Chocolate in Monosodium Glutamate-Induced Nontransgenic Alzheimer Disease Model Rats: Biochemical, Behavioral, and Histological Studies.

Abstract

The vulnerability to oxidative stress and cognitive decline continue to increase during both normal and pathological aging. Dietary changes and sedentary life style resulting in mid-life obesity and type 2 diabetes, if left uncorrected, further add to the risk of cognitive decline and Alzheimer disease (AD) in the later stages of life. Certain antioxidant agents such as dietary polyphenols, taken in adequate quantities, have been suggested to improve the cognitive processes. In this study, we examined the effect of oral administration of dark chocolate (DC) containing 70% cocoa solids and 4% total polyphenol content for three months at a dose of 500 mg/Kg body weight per day to 17-month-old monosodium glutamate treated obese Sprague-Dawley rats, earlier characterized as a nontransgenic AD (NTAD) rat model after reversal of obesity, diabetes, and consequent cognitive impairments. The results demonstrated that DC reduced the hyperglycemia, inhibited the cholinesterase activity in the hippocampal tissue homogenates, and improved the cognitive performance in spatial memory related Barnes maze task. Histological studies revealed an increase in cell volume in the DC treated rats in the CA3 region of the hippocampus. These findings demonstrated the benefits of DC in enhancing cognitive function and cholinergic activity in the hippocampus of the aged NTAD rats while correcting their metabolic disturbances.

KEYWORDS:

Alzheimer disease; cognitive impairment; dark chocolate; diabesity; monosodium glutamate
PMID:
26673833
DOI:
10.3109/19390211.2015.1108946